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Abstract. We have used a differential effective-medium (DEM) theory to model the dielectric
properties of sintered glass beads, impregnated with salty water, in the kHz and MHz ranges.
The starting point of the theory is a lattice of touching spheres in pore liquid. The sintering is
modelled by adding solid material and using the DEM method to calculate the dielectric response.
Dipolar interactions in the system are treated by using effective depolarization factors, obtained
from the dependence of the formation factor on porosity. The frequency dependence of the
formation factor is in good agreement with experimental data. For the real part of the dielectric
permittivity, discrepancies arise at low frequencies. This is probably due to percolation effects.

1. Introduction

The dielectric properties of liquid-impregnated porous solids are of interest in several
applications. For example, sedimentary rocks can contain crude oil and natural gas as
well as water. In such cases, dielectric measurements can be used for oil exploration [1].
In electrical insulation systems, oil-impregnated paper is prevalent, and the interest in the
electric properties of such systems is obvious. Building materials, such as cement, constitute
another type of porous material. Here, excessive amounts of pore water can severely impair
the mechanical properties of the material. It has been proposed that measurements of the
dielectric response can be used for nondestructive testing of cement [2].

In spite of considerable theoretical and experimental efforts, the dielectric properties
of porous materials are still quite poorly understood. In several cases, model systems of
so-called artificial rocks have been studied. One type of artificial rock is materials made
of sintered grains, i.e., the specimens are heated, causing the grains to fuse. We have
previously shown [3] that a material consisting of sintered polypropylene beads possesses
some similarities with materials consisting of sintered glass spheres, as far as the electrical
properties are concerned.

In this paper, we consider the dielectric spectrum in the kHz to MHz range of brine-
filled materials consisting of sintered glass beads. A model proposed by Sheng [4, 5] and
by Schwartz [6] is extended to frequency-dependent properties to describe the spectrum
and its dependence on porosity. We consider the sample processing to have two stages:
initially, a packing of the spheres; and secondly, the sintering process, which is modelled
as a cementation.

0953-8984/96/162781+10$19.50c© 1996 IOP Publishing Ltd 2781



2782 B Nettelblad and G A Niklasson

Table 1. Data on Archie’s law parameters obtained previously for different systems of
impregnated porous sintered solids.

Reference Type of material a m

Wong et al [8] Monosize spherical 3.3 2.3
glass beads

Holwech and Nøst [9] Monosize spherical 3.0 2.2
glass beads

Nøstet al [10] Monosize spherical 4.8 2.5
glass beads

Brouers and Ramsamugh [11] Alumina ceramics 1.1 1.9
(initial grain
appearance unknown)

Nettelblad [3] Multisize nonspherical 1.7 2.4
polypropylene beads
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Figure 1. The permittivities (a) and formation factors (b) of s.c. lattices (circles), b.c.c. lattices
(squares) and f.c.c. lattices (triangles) of touching spheres, calculated using the grain consol-
idation model. Note that the porosities are different for the different lattices.

2. Theoretical background

For brine-saturated porous rocks, Archie [7] found an empirical relation that is widely
known as Archie’s law:

σapp = σf aϕm. (1)

Here,σapp is the apparent conductivity of the rock,σf the conductivity of the fluid andϕ
the porosity, i.e., the volume fraction of pores. Originally, it was assumed thata = 1, but
it was later found that this had to be modified. For impregnated porous samples made of
sintered materials (for example sintered glass beads impregnated with salty water) values
of a different from unity have been obtained, as is shown in table 1, together with values
of m. A commonly used concept is the formation factor, defined asσf /σapp (assuming
a proportional dependence without contributions from interface conduction). Different
effective-medium theories on the dielectric properties of composite materials can be obtained
by making different assumptions about the microstructure. They are in principle valid for
all solid volume fractions, but restrictions may occur in practice. For example, the model of
Maxwell Garnett [12] assumes that one of the phases (generally the solid) forms inclusions
within the other phase. For spherical solid inclusions in the fluid this model yields for the
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complex permittivity

εapp − εf

εapp + 2εf
= vs

εs − εf

εs + 2εf
. (2)

Here, εapp is the apparent permittivity of the composite material,εf and εs are the
permittivities of the fluid and the solid respectively, andvs is the volume fraction of the
solid (note thatvs = 1−ϕ). For insulating inclusions in a conducting medium, this equation
yields for the apparent conductivity

σapp = σf

2ϕ

3 − ϕ
. (3)

The symmetric model of Bruggeman [13] yields the following equations:

ϕ
εf − εapp

εf + 2εapp

+ vs

εs − εapp

εs + 2εapp

= 0 (4)

σapp = σf

3ϕ − 1

2

(
ϕ > 1

3

)
. (5)

Note that these models are not able to reproduce equation (1). Another type of effective-
medium theory are integration methods or differential effective-medium theory. In such
methods, one starts with the pure host material, and adds infinitesimal amounts of guest
material in several stages. For each addition, one uses the Maxwell Garnett formula for
dilute suspensions to calculateσapp—however, withσf determined by a similar calculation
at the previous stage. Integration then yields

εs − εapp

εs − εf
= ϕ

(
εapp

εf

)1/3

(6)

which for spherical insulating inclusions in a conducting medium becomes

σapp = σf ϕ1.5. (7)

Other exponents are obtained if, e.g., ellipsoids are used. For fully aligned ellipsoids, it has
been shown that [14, 15]

εs − εapp

εs − εf
= ϕ

(
εapp

εf

)Ak

(8)

and

σapp = σf ϕ1/(1−Ak) (9)

where the depolarization factor,Ak, follows from

Ak = x1x2x3

2

∫ ∞

0

du(
x2

k + u
) [(

x2
1 + u

) (
x2

2 + u
) (

x2
3 + u

)]1/2 (10)

wherex1, x2 andx3 are the semi-axes of the ellipsoid.
For randomly oriented ellipsoids, the corresponding result is [15, 16]

ϕ =
(

εf

εapp

)3d (
εs − εapp

εs − εf

) (
εf − rεs

εapp − rεs

)R (
εf − qεs

εapp − qεs

)Q

(11)
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where

d = (1/A1 + 1/A2 + 1/A3)
−1

k = A1A2 + A1A3 + A2A3

q = −1 − k − (1 − 3k)0.5

1 + k

r = −1 − k + (1 − 3k)0.5

1 + k

Q = (1 − 2k − 3d)q + 2(k − 3d)

2(1 − 3k)0.5

R = (1 − 2k − 3d)r + 2(k − 3d)

2(1 − 3k)0.5
.

(12)

For nonconducting inclusions in an electrolyte, we obtain

σapp − σf ϕ1/(1−3d−R−Q). (13)

This technique is thus able to reproduce Archie’s law with the prefactora = 1, and with
various values of the exponentm. The exponent is thus dependent on the shape of the
particles. It should be mentioned that the exponent 1.5 obtained for spheres is a minimum for
randomly oriented particles, and going to nonspherical inclusions will accordingly increase
the value of the exponent.

Interestingly, the values ofm obtained for sintered materials are very similar, as is shown
in table 1. It appears as if the sintering process should yield an Archie-like behaviour with
an exponent in the range 2.0–2.5, probably dependent on the exact processing procedure.

Still, equations (9) and (13) are not able to reproduce a prefactora 6= 1. Sheng [4,
5] was able to obtain a prefactor different from one, in an analogous three-component
theory. In an elaboration of this work, Schwartz [6] considered an initially unconsolidated
mixture of solid and liquid (where the solid particles may be touching, making the composite
bicontinuous). To this mixture, we add solid material in infinitesimal amounts until the
desired volume fraction of solid is attained. The results when this approach is used differ
from equations (8) and (11) in the respect thatεf is altered toεinitial , the dielectric constant
of the initial mixture, andϕ is altered toϕ/ϕ0, whereϕ0 is the porosity of the initial mixture.
The same applies to equations (9) and (13); equation (13) then becomes

σapp = σf

F0

(
ϕ

ϕ0

)1/(1−3d−R−Q)

(14)

whereF0 is the formation factor of the initial mixture (an analogous expression is obtained
instead of equation (9)). This means that we obtain a prefactor that can be different from
unity. Sheng and Schwartz considered only the DC conductivity of the composite material.
Yet, the principle of using an integration theory starting with an unconsolidated pack, whose
properties can be estimated, is easily extended for calculating the frequency-dependent
properties.

Holwech and Nøst gave data for the dielectric spectrum of samples consisting of sintered
glass beads. They interpreted the results according to the spectral theory of Bergman [17]
and Milton [18], and obtained Bergman–Milton spectra for their different samples. Such
spectra may be useful in certain circumstances (they can be used to predict the effect of
an exchange of pore liquid), but there is no clear explanation of why a certain spectrum is
obtained. If our effective-medium method is able to reproduce measured data satisfactorily,
it also gives an indication of why particular spectra are obtained.
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Another model for calculating the dielectric spectrum of a porous solid was proposed
by Hilfer [19]. Since the composite material is disordered, the porosity is varying on the
meso-scale, and it is thus possible to define a local porosity distribution. To estimate the
properties of the composite, a local percolation probability is postulated. Haslundet al
[20] obtained good agreement between the predictions of theory and experiments. The
local porosity distribution was obtained from digitized pore space images but for the local
percolation probability, they used anad hoc ansatzwith an adjustable parameter that was
varied to obtain good agreement with experimental data.
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Figure 2. The permittivity (a) and the formation factor (b) for a sample having 5.2% porosity as
measured by Holwech and Nøst (solid line), calculated assuming an initial b.c.c. lattice according
to equation (8) (dotted line) and according to equation (11) (chain line).

3. Calculation procedures

According to Holwech and Nøst [9] their unconsolidated packs of unsintered glass spheres
had 39% porosity. That is not far from the value of 32%, which applies to a body-centred
cubic (b.c.c.) lattice of touching spheres. For simplicity, we chose to use such a lattice as
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Figure 3. The permittivity as measured by Holwech and Nøst for a sample of 7.3% porosity
(solid line, circles) and a sample of 10.7% porosity (solid line, squares) and the predictions
obtained using a b.c.c. lattice and equation (11) for 7.3% porosity (chain line) and for 10.7%
porosity (dotted line).

a starting point, since the calculations of the dielectric properties of such a lattice can be
easily performed. We have performed such calculations using the grain consolidation model
(GCM) [21].

We assumed the value of the dielectric constant of water to be 80, and of the glass
spheres to be 7 (that choice was motivated by an extrapolation of the high-frequency data
of Holwech and Nøst [9] for the dielectric constant to zero porosity). We assumed the
conductivity of the water to be 10 mS m−1 (since the data are presented as a function of
the reduced frequency,ωw, defined asωw = ωε0ε

′
f /σf , where ε0 is the permittivity of

vacuum andε′
f is the relative permittivity of the fluid, this does not really matter) and that

the glass was nonconducting. The results of the GCM calculations are shown in figure 1,
where we compare the results with the corresponding outcome from simple cubic (s.c.) and
face-centred cubic (f.c.c.) lattices.

The ensuing effective-medium calculations were carried out both according to
equation (8), assuming aligned ellipsoids, as well as according to equation (11), assuming
randomly oriented ellipsoids. For equation (8), the value of the cementation exponent,
m, that Holwech and Nøst found to be 2.2, suffices for determining the parameterAk

and thus for performing the calculations. When we use equation (11), equations (12)
and the measured cementation exponent suffice for determining two of the depolarization
coefficients,Ak, if the third one is given. As we will show later, the value of this third
depolarization coefficient does not influence the results very much. We chose to use the
valuesA3 = 0.1 (yielding A1 = 0.77, A2 = 0.13) andA3 = 0.2 (A1 = 0.77, A2 = 0.03) in
the calculations; the first combination was preferred and used in most of our calculations.

4. Results and discussion

The real part of the permittivity is usually frequency dependent. The imaginary part,
multiplied by ωε0, yields the frequency-dependent AC conductivity,σAC . Accordingly,
we can define a frequency-dependent formation factor byσf /σAC . In figure 2, we show
the frequency dependence of the real permittivity and of the formation factor for a porosity
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Figure 4. A comparison between the predictions obtained using a b.c.c. lattice and equation (11)
assumingA3 = 0.10 (solid line) andA3 = 0.20 (dotted line). The permittivity is shown in (a)
and the formation factor in (b).

of 5.2%, calculated according to equation (8) and according to (11), in both cases using a
b.c.c. lattice as a starting point. The data are compared with the results of Holwech and Nøst.
For the formation factor, both calculations show fair agreement with experimental results,
but the results from calculations according to equation (11) clearly show better agreement.
This should not be surprising, since it is clearly not reasonable to assume that the grains
form aligned ellipsoids (for an example of the structure of sintered materials see figure 4
in [10]). For the permittivity, equation (11) shows better agreement with experiments than
equation (8). Discrepancies arise at the lowest frequencies (ωw < 0.01), while the agreement
for higher frequencies is striking. For the porosity 7.3%, the agreement is even better, as is
seen in figure 3, while the agreement for higher porosities is not so good. This we attribute
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to the fact that our initial conditions (a regular lattice of 32% porosity) are not the same
as the real conditions (a random packing of 39% porosity). In figure 4, we compare the
permittivity and the formation factor calculated according to equation (11), usingA3 = 0.10
and usingA3 = 0.20. The differences are negligible, suggesting that the Archie exponent
is sufficient for determining the dielectric properties of the material.
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Figure 5. The (low-frequency) formation factor as a function of porosity as measured by
Holwech and Nøst (squares) and predicted using a b.c.c. lattice and equation (11) (solid line).

In figure 5, we give the low-frequency formation factor as a function of porosity
according to our calculations and according to Holwech and Nøst. It is seen that the
agreement is good. In figure 6, we show the predicted porosity dependence of the high-
frequency value ofε′, ε′

∞, and the high-frequency formation factor,F∞. The plots have
logarithmic scales on both axes and we have subtracted a zero-porosity value of 7.0 from
ε′
∞. The results can be very well fitted to power laws, where the exponents in both cases

are close to 1.1. However, the fits are not perfect, and it appears—especially for the
formation factor—as if the dependence of the porosity is somewhat stronger at higher
porosities. Apparently, the power-law behaviour is only an approximation. Note also that
the agreement with experimental results (figures 6 and 8 in [9]) forε′

∞ andF∞ is good.
One characteristic feature in the experimental results of Holwech and Nøst was the

increase in the low-frequencyε′ with decreasing porosity. Our calculations yield a low-
frequency value ofε′ that is fairly independent of porosity, but weakly decreasing with
decreasing porosity. It is possible, though, to obtain the reverse porosity dependence,
depending on the lattice used and on the value ofm, but in such cases the dependence is
still very weak.

This discrepancy in the low-frequency permittivity is probably due to the fact that our
model does not take into account percolation effects. (The way differential effective-medium
theories are constructed, the ‘host’ material remains continuous down to zero porosity.)
The experimental rise inε′ towards low porosities is characteristic of the approach to the
percolation threshold [22].

We have also performed calculations for the experiments described by Nøstet al in
[10]. Here, the exponentm in equation (1) is 2.5, and the depolarization coefficients have
to be altered accordingly. Also in this case, we have obtained good agreement between
calculations and experiments, except for at low frequencies (reduced frequency below
0.01) at the lowest porosities. In order to improve the DEM theory further, a percolation



Dispersion of liquid-filled sintered materials 2789

0.1

1

1 0

1 0 0

0.01 0.1 1

 ε
∞
 -

 ε
g

la
ss

porosity

(a)

1

1 0

1 0 0

1000

0.01 0.1 1

F
∞

porosity

(b)

Figure 6. The high-frequency values of the permittivity (a) and the formation factor (b) as
functions of porosity, calculated according to equation (11) (solid lines). The experimental data
from Nøstet al are shown as squares.

contribution with a depolarization factorL = 0 should be included. This would, however,
introduce an unknown fitting parameter into the theory. The depolarization factors occurring
in our model should not be taken to imply a spheroidal shape of the glass beads. They are
instead effective depolarization factors describing dipolar interactions in the sintered sample.
It is interesting that Granqvist and Hunderi [23] using results of Clippeet al [24] found
that the depolarization factors for an f.c.c. lattice of touching spheres are 0.0865, 0.0865
and 0.827. These are not far from the values that we have used and this indicates that
our depolarization factors are realistic for lattice-based systems. In our opinion, percolation
effects are not included in the calculations of [23, 24].

It should be noted that the local porosity theory of Hilfer [19] is more exact—if it were
possible to derive all parameters from images of the sample. Still, our comparatively simple
theory manages to yield a satisfactory agreement with experimental data.
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5. Conclusions

We have found that the differential effective-medium theory, with a lattice of solid spheres
in pore fluid as a starting point, can explain the dielectric spectrum of brine-impregnated
samples consisting of sintered glass beads. The main discrepancy is in the prediction for
the real part of the dielectric constant at low frequencies. We attribute this discrepancy to
the neglect of percolation effects in our model. We have also found that better agreement
is obtained when it is assumed that the solid particles are randomly oriented than when it
is assumed that they are aligned. Effective depolarization factors describe the interactions
between the solid particles.
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